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Improving Belief Propagation

Generalized Belief Propagation
regions of nodes pass messages
regions may overlap

Loop Calculus
view BP as a truncation of a series
expansion for exact inference
improve performance by including 
more terms

standard model,
non-standard BP

Graphical Model Transformation
non-standard 
model,
standard BP



Graphical Models for Codes: Normal Realizations
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Graphical Model Extraction - One Code Many Models

Code Definition Graphical Models Decoding Algorithms

Many Many More!
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Towards a Formalization of Extraction
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Towards a Formalization of Extraction

Question 1: Can the space of graphical models for a code be searched?
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Question 4: What are good heuristics for this hard combinatorial optimization?
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Difficult and open problem in general...
Our Approach - Short Cycle Structure

Difficult and open problem in general...
Our Approach - Greedy Extraction Heuristic

Cost function ⇔ good graphical model 



Searching the Model Space: Basic Operations

[Pe88], [Fo01],
  [KsFrLo01]

Constraint Merging / 
Splitting

Inserting / Removing 
Degree-2 Repetition 

Constraint

Inserting / Removing 
Trivial Constraints

Inserting / Removing 
Isolated Partial Parity 

Constraints

 Generalized
Parity-Check
   Matrices

 Redundant
Parity-Check
   Matrices



Searching the Model Space: Main Result

GC

G̃C T̃G

TGq − ary

Theorem:  Let      and     be two graphical models GC G̃C
for   .  Then     can be transformed into   
    via a finite number of basic operations.

C GC
G̃C

Proof:



Constraint Functions - qm-ary Graphical Models

min (ki, ni − ki) ≤ m

1) Maximum hidden variable alphabet size:      .qm

2) Each local constraint      satisfies:Ci

(or is a direct product of codes which do).

Wolf ’s bound on local 
trellis complexity
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Cost Functions - Short Cycle Structure

Candidate Proxies:

- stopping sets
- trapping / absorbing sets
- pseudo-codewords
- short cycles

➘ Can count cycles of length g, g+2 and g+4 in time O(gn3).

    (Halford & Chugg, “An algorithm for counting short cycles in     
     bipartite graphs”, IEEE Trans. IT, 52(1) 2006.)

✘
✘
✘



A Greedy Heuristic for Model Extraction

Motivation: Tanner graphs for many block codes necessarily contain
many short cycles

Idea: 

Halford, Grant & Chugg, “Which codes contain 4-cycle-free 
Tanner graphs?”, IEEE Trans. IT, 52(9) 2006.

Greedily reduce cycles via model transformation

Allowed Moves: 1) Tanner graph search - row operations

2) 2m-ary search          - local constraint merging

Cost Function: Short cycle structure (N4,N6,N8)



Greedy Heuristic: Experimental Results
Caltech & USC – Cyclic Networks of Relations – Beerel, Bruck, Chugg 10
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Cyclic Tanner 7251 717 K 74 M
Improved Tanner 5415 466 K 43 M

m = 2, cyclic 3465 230 K 15 M
m = 4, cyclic 706 16 K 292 K
m = 6, cyclic 126 657 0

Figure 3: Preliminary results for obtaining good cyclic models for the (n = 63, k = 45) BCH code. The
performance shown is for soft-decision decoding (soft-in decoding) with antipodal signaling over the additive
white Gaussian noise channel except for the curve labeled hard-in, which is algebraic decoding based on
thresholding these channel measurements to hard decisions before decoding. The “improved Tanner graph”
model is obtained by attempting to maximize the minimum cycle length. The other models are 2m-ary cyclic
models. The number of cycles of length l is denoted by Nl in the accompanying table. Note that the trellis
complexity of this code is 214 making it impractical to evaluate the optimal performance. However, based on
similar results and information theory bounds, we expect that there is an additional 1 dB of improvement
available relative to the best curve shown.

cycles. We propose to examine the applicability of search heuristics such as look-ahead of more than one
move, or backtracking as needed. We have formalized many of these problems as integer programs and
can therefore draw on heuristics in the literature for addressing these problems. We also will utilize any
improvements in the quality measures we develop as described above. Finally, it is interesting to consider
other sets of sufficient model transformations. While the set of models that can be searched would not
be changed by using a different set of sufficient moves, the result of a heuristic search algorithm could be
significantly impacted by this basis set.

Design from Empirical Observations: In some applications the specification of a global realization will
not be available and the NoR will need to be designed from realizations of data that obey the implicit
global relation. Thus, we propose to investigate methods for learning relations from empirical data and
constructing good cyclic NoRs as a result. We will consider such design algorithms that are randomized in
the sense of which variables they consider for constructing relations. For example, if there are 1000 visible
variables in a system and we seek a NoR based on degree 3 relations, it may be impractical to attempt to
estimate all

(1000
3

)
possible relations. Thus, the algorithm will need the ability to recognize when a significant

correlation exists between subsets of variables. Also, because of uncertainty related to limited sample size,
we propose to develop methods for monitoring relations and deleting them if they are violated or ineffective.
To characterize these properties, we may use iterative MPAs on sample statistics of variable values.

The algorithms must also have the ability to add new hidden variables. Here we can draw upon our
results from the somewhat simpler design problem discussed above. Specifically, at a given stage in the
development of the NoR, we may consider model transformations that achieve a better combination of
quality and complexity using algorithms designed for the design for a known global relation. This process
will naturally yield new hidden variables that capture some aspect of relations learned from the empirical
data. The generation of new hidden variables may need to be more intimately included in the design
algorithm to effectively discover simplifying relations. To see this, consider the relation on 4 continuous

(63,45) BCH Code
[HaCh06b], [JiNa06]



Synthesis & Open Problems

GBP vs. Model Tx:
- similar if GBP regions don’t overlap
- model transformation allows redundancy

Loop Calculus vs. Model Tx:
- similar problem of how to transform / what  
  loop terms to use
- model transformation improves dense 
  models, loop calculus improves sparse models

Major Open Problems:
- better cost functions & search heuristics
- model transformation + GBP / loop calculus


